Квантовые плазмоны впервые экспериментально изучены для наночастиц в 1 нм

Квантовые плазмоны впервые экспериментально изучены для наночастиц в 1 нм

Спорный вопрос о поведении плазмонов, коллективных колебаний электронов для отдельных металлических частиц размером в один нанометр, наконец-то решён инженерами из Стэнфордского университета. Экспериментальное исследование этого феномена может повлиять на всю нанотехнологическую отрасль.

Спорный вопрос о существовании плазмонов, коллективных колебаний электронов для отдельных металлических частиц размером в один нанометр, наконец-то решён инженерами из Стэнфордского университета (США). Такие частицы содержат всего от 100 до 10 000 атомов. Экспериментальное исследование этого феномена может повлиять на всю нанотехнологическую отрасль.
и их эффекты в металлических наночастицах изучаются давно и всерьёз, с тем чтобы быть применёнными в нанофотонике, биологии, спектроскопии и солнечных батареях. Хотя их свойства для частиц, превышающих 10 нм, описаны довольно подробно, всё, что меньше, долгое время оставалось недоступным исследователям из-за слабого рассеивания столь малыми частицами и металл-лигандного взаимодействия, а также недостаточной разрешающей способности применяемых инструментов наблюдения.

Квантовые плазмоны впервые экспериментально изучены для наночастиц в 1 нм

Новейший микроскоп E-STEM впервые позволил детально изучить наночастицы предельно малых размеров, буквально от десятков атомов. (Фото Andrea Baldi / Jennifer Dionne / Stanford University.)
Поэтому до недавнего времени плазмонные свойства наночастиц менее 10 нм оставались неясными, а их использование в традиционных нанотехнологических приложениях было затруднительным. В новой работе исследователей из изучался плазмонный резонанс в отдельных безлигандных наночастицах серебра с использованием просвечивающего растрового электронного микроскопа (E-STEM), который лишь недавно заработал в Стэнфорде. Показания E-STEM, в свою очередь, корректировались по методу спектроскопии потерь энергии электронов () — техники, определяющей потерю электронами энергии при прохождении через наночастицу.

Всё это позволило провести прямую корреляцию между геометрией и размерами 1–10-нанометровых частиц и их поверхностным плазмонным резонансом. В частности, выяснилось, что при диаметре наночастицы серебра в 2 нм плазмонный резонанс начинается при энергии входящих электронов, на 0,5 эВ большей, чем для частиц величиной в 20 нм.
Учёным удалось создать действующую аналитическую квантовомеханическую модель, описывающую такой сдвиг в пороговой восприимчивости плазмонного резонанса. По их словам, дело в изменении абсолютной диэлектрической проницаемости наночастиц в сравнении с образцами бóльших размеров. Исследованные 1-нанометровые частицы смогут применяться с лучшей эффективностью (благодаря большей поверхностной площади) как при создании нанокатализаторов, так и в квантовой оптике и электронике, где они позволят заметно уменьшить размер элементной базы.

Квантовые плазмоны впервые экспериментально изучены для наночастиц в 1 нм

Исследованные наночастицы так малы, что на снимках видны отдельные группы атомов. (Фото Jonathan Scholl / Stanford Engineering.)
Кроме того, авторы полагают, что использование десятикратно меньших наночастиц для раковых клеток (технологии, активно изучаемой сегодня в онкологии) поможет уничтожать смертоносные клетки с меньшим риском для здоровых тканей пациентов. Обычно наночастицы наносятся на поражённые клетки, после чего их подвергают инфракрасному излучению. При этом опухолевые клетки умирают от перегрева, а здоровые ткани не страдают. По крайне мере не должны страдать: плазмонный резонанс на поверхности наночастиц защищает находящиеся ниже здоровые ткани от волн меньше определённой частоты (так называемой плазмонной). Впрочем, у используемых сегодня наночастиц плазмонная частота довольно высока, и тепловое воздействие на здоровые клетки полностью исключить не удаётся, что, понятно, небезвредно. С новыми наночастицами этого можно будет избежать.
Подготовлено по материалам Стэнфордского университета и Nature.

источник: science.compulenta.ru

Расскажите друзьям

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Больше информационных новостей

Широкоформатная печать является одним из наиболее востребованных способов печати в…

Подробнее

Онлайн-игры не только предлагают развлечение и возможность социализации, но также…

Подробнее

В современной жизни присутствуем множество гаджетов-помощников. Мультиварки, микроволновки, фены, пылесосы…

Подробнее

В этом году продвижение в Топ органической выдачи ПС Яндекс…

Подробнее
Недавно опубликованы

Промокоды – это специальные коды, которые предоставляют выгодные условия на…

Подробнее

Плоскошлифовальный станок — это универсальное оборудование, предназначенное для механической обработки…

Подробнее

Банк Бланк - отличное решение для бизнеса. Он предоставляет широкий…

Подробнее

Онлайн-игры не только предлагают развлечение и возможность социализации, но также…

Подробнее